Spinal Cord Injury (SCI)
   · Types of Injury
   · Classification &      Terminology
   · Injuries / Prognosis
   · At Risk Activities
 Treatment Options
   · Coping with the Injury
 Rehabilitation
   · Finding the Right
      Rehab Center
   · Pediatric Questions
   · List of Rehab Centers
 Clinical Trials
 At Risk Activities
 SUV Rollovers & SCI
 Financial Assistance
 Spinal Injury News
 Spinal Injury Resources
 Site Map
 
Search for information:
 
     Match:
any search words
all search words

Click Here for a Free
Information Packet

FOR MORE INFORMATION
Please call
1-800-913-6370

We will gladly answer your questions and send a free packet with additional
information on:

  • New treatment options
  • New clinical trials
  • Doctors
  • Research
  • Financial Assistance

 

 



spin cord
Spinal  Cord  Injuries
suv rollover accident
Spinal cord injury

 

Spinal Cord Injuries

Science making strides in treating spinal cord injuries

By Anita Manning, USA TODAY
August 16, 2004
Not so long ago, a spinal cord injury meant life in a wheelchair with little chance for improvement. But today, scientists say research is pointing toward treatments that may restore movement, relieve pain and offer hope.

Just ask Diane Hughes. The Hammond, La., teacher was partially paralyzed from the chest down 12 years ago by a gunshot wound and spent the following year having "a pity party," she says.

She decided that wasn't helping so with the support of family and faith, she went back to work, built a wheelchair-accessible home and two years ago took part in a study to test new rehabilitation methods at the Miami Project to Cure Paralysis at the University of Miami.

Hughes, 58, was strapped into a computer-driven robot that helped move her legs on a treadmill. After 12 weeks, she says, "I could move my legs easier, lift them easier." With stronger legs, she found it possible to stand or get in and out of her wheelchair more easily.

The concept behind the research, which is evaluating several methods of locomotion training, says study director Edelle Field-Fote, is that inside the spinal cord is a "mini-brain" doing complex movements innately. "Walking, swimming and flying are things animals do innately," she says. Humans have evolved in a way that requires the brain to turn those circuits on, but by retraining the circuits in the spinal cord, it might be possible to enhance motion, even when signals from the brain are blocked.

More than 200,000 people in the United States use wheelchairs because of a spinal cord injury, and every year about 11,000 more injuries occur, slightly more than half in people ages 16 to 30.

Research is moving in several directions as scientists find ways to prevent biological processes that cause harm and encourage those that may restore damaged nerve cells. The studies are producing insights into what causes paralysis.

"In the last five years, it has never been more exciting in terms of the knowledge we're obtaining," says neurosurgeon W. Dalton Dietrich, scientific director of the Miami Project.

Advancements could lead to new treatments to prevent or reverse severe paralysis.

Complex nerve system

The 2-foot-long cord that runs from the base of the skull to the lower back is made up of a complex highway of nerves that are encased in protective membranes, cushioned by fluid and surrounded by the vertebrae that make up the backbone.

Damage to the spinal cord nerves can result in partial or complete paralysis below the point of the injury. The degree of damage depends on the severity of the injury and where it occurs. An injury high on the spinal cord can leave a person unable to breathe or move his arms and legs without assistance while injuries lower on the back may affect only the legs.

In the hours following an injury, the focus is on stabilizing the spinal cord and preventing nerve death, Dietrich says. Scientists are trying to develop drugs that can be given to patients as soon as possible after the injury to halt the inflammatory process, which can cause further nerve damage.

A major area of scientific discovery is in repair or regeneration of damaged nerve cells, a process once thought impossible. "In medical and graduate school we are taught to think that after injury to the central nervous system there is no recovery," says Yale neurologist Stephen Waxman.

But research is turning that truism around. At the Kentucky Spinal Cord Injury Research Center at the University of Louisville, scientists are studying the mechanics of cell death, regeneration and new imaging methods to help doctors make surgical decisions.

"What is becoming exceedingly clear is that there's no one approach that's going to be successful," says scientific director Scott Whittemore.

Fixing the pain

At Yale, Waxman and colleagues are identifying what happens to nerve cells to cause the intense pain experienced by up to half of spinal cord injury victims. They have zeroed in on a molecule that may provide a target for drug therapy and other strategies.

Waxman's team also is focusing on restoring nerve fibers by replacing their protective coating, called the myelin sheath, which helps to speed nerve impulses.

"All spinal cord researchers agree that it looks like you need only 10% to 15% of the nerve fibers ... to have some degree of usable gait," he says. "Now, you're not going to be doing a ballet dance, but you tell that to Christopher Reeve. If he could walk 15 feet, that would be a major advance in terms of his quality of life."

Progress will come in increments. "Can we take someone paralyzed from the neck down and give them use of their shoulders? Can we get someone to walk four or five steps? I think those have turned into realistic objectives."

People with spinal cord injuries should not give up hope.

"When I was a kid, I wanted to be an astronomer, and I asked my dad if men could ever walk on the moon," Waxman says. "He said, 'That's impossible.' Years later, I remember being a med student and with my wife watching men walk on the moon.

"The impossible is now possible. It may not happen overnight, but we now have the tools."


Brain injury opened door to life of art

Byron Crawford

August 16, 2006 - With each visit to the Fine Arts exhibits at the Kentucky State Fair over the years, I have found myself wishing that I could look on the backs of the paintings, sculptures and photographs and read the stories behind the entries.

There is always a story, you know. In every oil portrait of a tired face; every pencil sketch of a smiling child; in every pair of calloused hands.

One of those stories was hidden in the comic, off-balance, self-sculpture of a man in a business suit -- titled "Blind-Sided" -- that won first place in last year's ceramic sculptures competition, recalled Dennis Shaffner, the fair's fine arts superintendent.

In Vail, Colo., during the summer of 1998, Jim Chambliss was blindsided by a sports utility vehicle as the 34-year-old walked across a parking lot near his home, Shaffner said. The Hardinsburg, Ky., native was a successful lawyer with degrees from Transylvania University and the University of Denver School of Law.

The accident did not even knock him off his feet. Though his head had snapped against the SUV when he was struck, he was diagnosed with only a mild concussion.

In the months that followed, however, he would pass out and wake up in intensive care with partial amnesia; lose consciousness and wreck his car; then notice he was losing his vocabulary and suffering serious memory lapses.

The diagnosis was temporal lobe epilepsy.

The left side of his brain had been damaged by what seemed a harmless bump. Eventually, unable to drive for 5 1/2 years or to continue his law practice -- and nearly broke from medical expenses -- he took a job substitute teaching.

Then something amazing happened. Jim Chambliss developed a talent for art.

"I was playing around with a block of Styrofoam one day while working as a substitute teacher, and carved a salamander from memories of my childhood that impressed the students and faculty at the high school," he recalled.
Shifting sides of his brain

It was as if the damaged left side of his brain had somehow shifted focus to an enhanced right-brain concentration on a hidden talent for artistic expression.

By 2001, with help from his neuropsychologist, family and friends, the Brain Injury Trust and vocational rehabilitation, he had enrolled in art school at the University of Louisville, from which he earned a master's degree.

Although his work has since earned several awards and international recognition, his Kentucky State Fair first-place award for the self-sculpture inspired by his brain injury marked a memorable transformation from lawyer to artist for Jim Chambliss.

And it has reinforced his passion for unraveling part of the complex mystery of how injured brains often awaken a sleeping gift of artistic creativity.

Now, with a prestigious International Postgraduate Research Scholarship to the University of Melbourne, Chambliss is working toward a combined doctorate in creative art and medicine.

His ongoing research into the influence of epilepsy, bi-polar conditions, multiple sclerosis and other brain disorders on art has become more than an academic pursuit.

"I feel compelled to help others in similar circumstances," he said. "I want to use my art, research and experiences to serve as a catalyst to promote further research."

Chambliss hopes to expand his research to the United States and plans to invite many artists in the Kentucky State Fair arts competition to participate in some of his studies.

Behind every piece at the Kentucky State Fair, there is a story.


 

FREE
Spinal Cord Injury Packet
Spinal Cord Injury Booklet
Click here to get this important patient information delivered to you quickly!

 


To Obtain the Best Treatment Info & Financial Assistance contact us for a FREE SPINAL CORD INJURY INFORMATION PACKET which includes;

Rehabilitation Hospital Locations
Clinical Trials
Research
New Treatment Options
Doctors
Financial Assistance

Fill out the form below or call 1-800-913-6370.

First Name
Last Name
Address
City
State
Zip

Phone

Email
   
Have you or a loved one had :
Spinal Cord Injury (paraplegic)?

Yes No

Spinal Cord Injury
(tetraplegic) / (quadriplegic)?

Yes No

How were you or your loved one injured?
Car or SUV Accident:
Yes No

Car Rollover:

Yes  No
SUV Rollover:
Yes  No
Vehicle Roof Crush Injury:
Yes  No
Tire Failure:
Yes  No
Was a seat belt worn at the time of the accident?:

Yes  No Not Sure
Work Related:
Yes  No
Gun Related:
Yes  No
Swimming Pool Injury:
Yes  No
Other Accident:
Yes  No
Disease:
Yes  No
Age of Injured Person:
  
Date Injury Occurred:
  
   

Please tell us
what happened:

 

 

 

 

 

 

Sitemap | Spinal Cord Injury Types | Sport Utility Vehicle Rollovers | Injury Classification | Spinal Injury Prognosis | Spinal Cord Injury Risk | SCI Treatment Options | Coping with Spinal Cord Injuries | SCI Rehabilitation Units | Finding a Rehab Center | Pediatric Programs | SCI Rehabilitation Centers | Spinal Cord Clinical Trials | SUV Rollovers | Financial Assistance | Spinal Cord Injury |